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Summary 

A source of fluid with an oscillatory strength, which is situated on the axis of a rotating fluid, commences to act 
at time t = 0. We describe how inviscid, geostrophic forces lead to the development of the characteristic cone 
when the frequency of oscillation is less than twice the frequency of rotation. Eventually, viscous forces become 
important when the time is 0(E-1/3), where E is the small Ekman number, in forming the thin shear layer 
along the surface of the cone. 

1. Introduction 

One of  the striking phenomena  in rotat ing fluids is the existence of  internal waves due to 
the oscillation of  a b o d y  in the fluid. This observation, with clear experimental  evidence, 
was first reported by  Oser [1], and is present whenever the frequency of  the oscillations is 
less than twice the frequency of  rotat ion of  the fluid. Mathematically,  Reynolds  [2] 
showed that in this domain  the governing linear equations (based on oscillations with an 
infinitesimal amplitude) are hyperbolic,  and therefore capable of  sustaining wave motion,  
whereas outside the equations are elliptic and the behaviour  more  similar to potential  
flow. The experiments clearly show the presence of  thin internal shear layers radiating 
f rom the body,  which are coincident with the characteristic cones expected f rom the 
hyperbolic  equat ions ,  and also with their reflection when such are possible. A n  introduc- 
t ion to the description of  these effects is conta ined in Greenspan ' s  text [3, p. 200]. 

The shear layers are represented by  the existence of  a discontinuity in the solution of  
the inviscid equations, and it is the role of  viscous forces to smooth  this discontinuity.  The 
paper  by Wal ton  [4], who solved the flow in a split-disc geometry  for oscillatory 
disturbances,  showed clearly how viscosity modifies the discontinuities. In  fact, one of  the 
clear observations which can be drawn f rom Wal ton ' s  calculations concerns the similar 
structure between these layers and the classical Stewartson layers in a rotat ing fluid 
without  oscillations. 

The aim of  the present note is to consider the evolution of  these layers through 
investigating the simple model  of  a point  source of  fluid with oscillatory strength, which 
commences  at time t = 0 in an unbounded  fluid. Al though the resulting analytical 
expressions are fairly complex, the basic mechanism can be clearly delineated. Inviscid, 
geostrophic forces act through times t less (by an order  of  magni tude)  than E-1 /3 ,  where 
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E is the small Ekman number, to focus the distinct effects of the source flow along the 
characteristic cones, and it is only when t =  O(E -1/3) that viscous forces become 
important  in the narrow layer, of width O(E1/3), which has formed along the cones. The 
discussion can be seen as a generalization of that included in an earlier paper (Smith [5]), 
which illustrates further the similarity noted by Walton [4]. There have been few transient 
solutions for oscillatory flows, and, because they deal with more general situations (c.f. 
Baines [6]) they become very detailed analytically for just the inviscid models, so viscous 
effects have, in the past, been inferred rather than calculated. 

In the last section we briefly consider the results when the source is placed between 
parallel discs which rotate with the fluid. It is seen how the development of the reflected 
layers comes simply through satisfying the requirement that there is no flux across the 
discs. 

2. The fundamental solution 

A fluid rotates with constant angular velocity fl, and the source is placed at the origin O 
of a cylindrical co-ordinate system where the axis of rotation coincides with the vertical 
axis. If  a is the reference length, we write ar, az as lengths in the radial and axial 
directions; the time is represented by f~-lt. We write f~au(r, z, t), ~2av(r, z, t) and 
flaw(r, z, t) for the radial, azimuthal and axial velocities respectively; the pressure is 
p~ZaEp(r, z, t) when the constant density of the fluid is p. If the strength of the source is 
~, which is small enough to permit linearization of the equations, then writing u = ~U, 
v = r + cV, w = eW, p = l r 2  4- cP, we have 

Ur+ 1U+r W~ = 18(r )8 ( z )H( t )  cos tot, (2.1) 

U t - 2 V = - P ¢ + E (  Urr+ 1Ur- 1 ) r -~  U +  Uzz , (2.2) 

V,+ 2V=E(Vr,+ Vzz), (2.3) 

( 1 ) 
Wt= - P z 4 - E  Wrr4- --Wr4- Wzz ; ( 2 . 4 )  r 

E is the Ekman number, defined by E =  p/~2a 2, where v represents the kinematic 
viscosity. The only conditions to be imposed are that the velocities U, V, 14" ~ 0 as r, 
Z ----~ O0. 

The solution of these equations is developed in the same manner  as that done 
previously in Smith [5], through taking Laplace transforms in t, Fourier transforms in z 
and Hankel transforms in r. For example, when 

fo fo fo V(k, a, s) = k e-Stdt cos azdz rV(r, z, t)Jl(kr)dr, (2.5) 
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then the calculations show 

V= - 2k2s { E(k2 + a2) + s  } (2.6) 

(s 2+to2)[ (E(k  2 + a  2 ) + s ) 2 ( k 2 + a 2  ) + 4 a 2 ]  ' 

similar expressions follow for U, W and P. These will be valid for all values of E, though 
we now proceed to consider asymptotic approximations for E << 1. The other assumption 
we set is that the frequency to satisfies to < 2, the situation with to > 2 is of less interest and 
is not pursued here. 

It is most convenient, when calculating the approximations, to work with the function 
X(r, z, t) defined by X r = V-generalized functions, which would otherwise occur, are now 
avoided without losing the essential phenomena we intend to describe. Hence, much of the 
remainder of this paper discusses asymptotic results for the integral 

X= 2_~ fc+ioo s_e~ds /.oo cos azdafo°°kJo(kr) 
~zi * c - i ~  S 2 + to2 go 

X ( E ( k Z + a 2 ) + s ) d k  (2.7) 

( E ( k  2 + a 2) + s ) Z ( k  2 + a 2) + 4 a  2" 

Firstly, we set E = 0 to gain the inviscid solution, which is written as x(r,  z, t )= 
l imE~ 0 X(r, z, t). When the inverse Fourier, and then Hankel, transforms are taken, it 
follows that 

x= 2 fc+ioo seStds 
rriR c - i~  (s 2 + to2)(s2 + 02) 1/2' 

(2.8) 

where R 2 =  r 2 +  z 2, and o is the basic geometric similarity variables o = 2r/R.  The 
integral (2.8) can be evaluated as the double series 

2 ~ 1)n+lt 2n+l 
X = ~  __~0 ( -  ~ (2m),  to2,,_,,)o2,,, 

= (2n + 1)! m=o 22re(m!)2 

though this is of value only for small t. However, through deforming the contour of the 
integral (2.8), taking care to adjust for the branch points at s = + io ,  or, alternatively, 
through taking the inverse Laplace, and then Fourier transform of the original triple 
integral, plus a change of variable of integration, we obtain 

4 ° to si_n_tot__~-flsinflt dfl; (2.9) 

it is this integral which reveals most clearly the behaviour for large t. 
Now the dominant contribution to (2.9) as t ---, o0, when I to - o ] = O(1), comes from 
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just the first term in the numerator, which shows 

{~, 2 sin tot 
X = R(to 2 - -  0"2) 1/2'  to > 0"' (2.10) 

t o < a .  

The characteristic is along o = t o - t h a t  is, where r/z~-to(4--to2) -1/2, a s  shown by 
Reynolds [2]; the velocities are zero outside the characteristic cone, but become infinite on 
the surface. 

Next, through adding and subtracting the term to sin fit to the numerator of (2.9), and 
simplifying, we see that 

= __ 4__4_[fo° sinfl t .df l  
~R (~ + to)(o2_ ~2),/2 

+ to sin tot f ~  (1 = cos sit )____d__flfl 
~'-° f l (2 to -  fl){ o 2 -  ( t o -  fl)2) 

1/2 

f~' sin fit. dfl 
+ to c o s  tot - o  Z ( 2 t o  - 8 ) {  o2  _ (to _ Z ) 2 } , / 2  

exactly. For large t, the first integral is O(t-1),  but when 

= ( to-  o)t = O(1) 

the contribution from the second and third integrals leads to 

1 - - }  [sintotf~ ( 1 - c ° s y ) d Y  +costotf~ sin g . d T  (2.11) 

Hence, the quantity ~ is the basic similarity variable which describes the formation of the 
characteristic cone in the fluid, across which there is the discontinuity in the inviscid 
description as t + oo. 

The integrals in (2.11) have different values depending on whether ~ is positive or 
negative; for ~ > 0 it can be shown that (2.11) is given exactly by 

(2.12) 1 ( 2t/1/2[{ C(~) q- S(~)}  sin tot + { C(~) - S(~)}  cos tot] x= -X~to~] 

where C(x) and S(x) are Fresnel integrals defined by 

C(x) + i S ( x )  = (2¢r)- ' /2foXy-'/2 eirdT. 
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Further, for ~ = - ~  > 0, it also follows that 

X =  ~ ~-~ ( 1 -  C ( ~ ' ) - S ( ~ ) )  c o s 2 ~ + { C ( ~ ) - S ( ~ ) )  s in2~ 

] ] - ( 1 - C ( f ) - S ( ~ ' ) )  s in2~ '+  ( c o s ~ ' - s i n  f)So,1/2(~" ) cos~ot , 

where So,1/2(x ) is a Lommel function defined by 

*OO 

So.1/2(x ) = 2jo cosh 3, e -~ si.h 2 V d y ;  

c.f. Erdelyi et al. [7]. 
Some special cases can be noted. As ~ ---, oo, then C(~), S(~) --* 1/2 ,  so that 

1 (2 t  / 1/2 
X = - ~ ~ ~--~ ] sin tot, 

to agree with (2.10). When ~ --* o0, it follows from the property SO,1/2(X ) • 1(,17. + 2)x-~ as 
x ---, oo, that X tends to zero as necessary, with a decay proportional to ~--1. Also, when 
the limits as both ~ and ~ tend to zero are taken, it is seen after a more detailed 
calculation, using, in particular, the property So,1/2(x) = ½(2~r)l/2x-l/2 as x --, 0 + ,  that 
X is continuous with 

2[2 t l l /2s in ( to t+¼*r)  for o = t o .  (2.14) 
X = -  R \ Tr~o J 

Consequently, the magnitude of X tends to infinity a s  O(t 1/2) on the characteristic cone; 
also, the oscillation has a phase shift f rom that present within the cone by (2.10). 

This inviscid solution can be expressed by X= R-1.[(o, t) for all time, so the physical 
variables are U =  R-2ql(o, t), V= R-gYP(o, t), W= zR-3#"(o, t), with the stream 
function xI' = gR-l~b(o, t). It  then follows that ~k = - ½ft, so that ~ ' =  ½{(4 - a 2 ) f o  - of}, 
plus q /=  - ½Y/~, and ~/ '= - o - 1 ~ , ;  the resulting equation away from the origin for ~p, in 
terms of the similarity variable o, is 

0(4 - o2)d/oott- 2(2 + o2)~kott + 03(4 - o2)~o,, + o2(8 - 5o2)i/,o - 3o3tp = 0. 

Finally, the relation between q/ and ~g" is equivalent to U / W =  r/z, so that the inviscid 
theory shows the velocity in the azimuthal plane to be completely radial (in the spherical 
sense), as could have been anticipated. It is the role of the geostrophic forces to weaken 
the magnitude of this velocity outside the characteristic cone as the time increases. 

It  is more difficult to evaluate the integrals when the viscous effects are included. 
However, when we take the large-time solution, after the transient effects have decayed, 
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then it is seen that 

2 sin wt ~ kw__~z (16Ek3______z z ) 
X = ( 4 -  w2) 1/2 fo sin ( 4 -  w2) 1/2 exp ( 4 -  w2) 5/2 J°(kr)dk' (2.15) 

after calculating the residues for the a-integral when E << 1-  which agrees with (2.10) 
when E = 0. In the layer along the characteristic defined by */= O(1), where 

(4 - w2) 1/2 - wz = E1/3rl, 

the integral (2.15) becomes 

t2 1J2  l j6 t ( 16 3z/d  ~rr i , / i-1/2 sin o~tfo y-1/2 sin y + l~r exp (4_w2)zT/3 

hence the viscous layer has width O(E1/3), a s  shown by Walton [4], with X--  O(E-1 /6)  
there. 

Further, we can evaluate the inverse Laplace transform in (2.7) exactly, then set E << 1 
following transformations similar to those pursued earlier in the inviscid case, to show 

X =  1r J0 fl(w 2-f12)fo c o s a z J o ( f l - l ( 4 - f l 2 ) l / 2 a r )  

× [w sin co t -  f l e  -4~a2/~ 2sin flt]da; 

this reduces to (2.9) quickly when E = 0. For small E the dominant part of the a-integral 
is derived where a is large, and so can be evaluated on approximating the Bessel function 
(though only in terms of confluent hypergeometric functions, which does not help 
particularly). Nevertheless, the contribution for "r=E1/3t = O(1) comes from the 
neighbourhood of fl = w, which reveals the basic parameter to be ~/zz-1 and X to be 
O(E  -1/6) when ~/, ~-= O(1). 

Consequently, the characteristic cone is formed through inviscid action only during the 
time t << E -1/3, with the flow characterized by the similarity variable ~. When t =  
O(E-1/3) viscous forces come to act within the layer where 7/= O(1) to develop the final 
structure in the layer on the surface of the cone; when t >> E -1/3, the simple oscillatory 
state alone dominates. 

3. Source between parallel discs 

To extend the fundamental solution we now briefly consider the effects when the source at 
the origin is placed between infinite discs which, for convenience, are symmetrically 
placed along z- -  _ d; the discs rotate with angular velocity ft. Following the earlier 
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approach  (Smith [5]) we write, for example, 

W=~-y1 fc+iOOc_ioo S2 "l- O) 2S-estd-~S fo °°{ke-°z+C(k's) sinhOz}J°(kr)dk' (3.1) 

where 0 = ks(s 2 + 4) -1/2 + 16Eks(s 2 + 4) -5/2 + O(E2), and C(k,  s) is an unknown 
function to be calculated on satisfying the boundary  condit ions on z = _ d; equivalent 
expressions follow for U, V, P. They  are valid everywhere in the flow region except in the 
Ekman  layers along the discs; however, the no-slip condit ions there can be replaced by the 
Ekman  compatibi l i ty  condit ion W = -  ~Et/z(Prr+ r-lPr). When the details are com- 
pleted, it is seen that the dominan t  behaviour  away f rom the characteristic surfaces is 
completely inviscid for small E,  that  the Ekman  condi t ion reduces to just  W =  6 on 
z = ___d, and hence that it is now sufficient to take 0 - - - k s ( s 2 +  4) -1/2. Consequently,  
C( k, s )= - k e-°d/sinh Od, and the corresponding expression for the funct ion x(  r, z, t) 
is 

se 'ds j;[ e°"cos Oz 1 e -°~ + Jo(kr)dk .  
~ri ~ - i~  (s  2 + to2)(s 2 + 4) ~/2 sinh Od 

(3.2) 

It is now a straightforward calculation to expand the expression in the square brackets of  
(3.2) as an infinite series of  exponentials,  and evaluate the k-integral, to show 

1 ~_, 1 fc+ioo s e st , 2 x - t / 2 ,  
X = rr---i , =  -o~ R---~ -/c-i~ s 2 + o~ 2 (s2 -1- tr, ) as, (3.3) 

where R ] = r 2 + (z  + 2 n d )  2 and o, = 2 r / R , .  The term corresponding to n = 0 gives the 
original source, and the other terms represent an infinite series of  reflections in the planes 
z --- + d. The final expression for X is found on evaluating (3.3), which is just  a sum of the 
integrals (2.8). 
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